
On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 4581

(http://iopscience.iop.org/0305-4470/22/21/020)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 07:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) 4581-4588. Printed in the UK 
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Abstract. The quantum group SU(2), ,  is discussed by a method analogous to that used by 
Schwinger to develop the quantum theory of angular momentum. Such theory of the 
q-analogue of the quantum harmonic oscillator, as is required for this purpose, is developed. 

1. Introduction 

The quantum Yang-Baxter ( Q Y B )  equation is by now known to play a profound role 
in a variety of diverse problems in theoretical physics. These include exactly soluble 
models (like the six- and eight-vertex models) in statistical mechanics (Baxter 1982), 
integrable model field theories (Sklyanin 1980, Kulish and Sklyanin 1980, Kulish and 
Reshitikhin 1981, de Vega et a1 1984, de Vega 1987) exact S-matrix theory (Zamolod- 
chikov and Zamolodchikov 19791, two-dimensional field theories involving fields with 
intermediate statistics (Frohlich 1987), and conformal field theory (Moore and Seiberg, 
1988a, b, Frenkel and Jing 1988, Bernard 1988). 

Now, just as the Jacobi identity is an associativity condition for a Lie algebra, so 
does a QYB equation play a similar role for an algebraic structure of a new type that 
is a generalisation of a Lie algebra. This structure is sometimes described as a 
q-deformation (i.e. a deformation or modification, cf (1)-(3) below, that involves a 
parameter q )  of a Lie algebra. Mathematically it is a Hopf algebra (Abe 1980), but 
it is usually referred to loosely as a quantum group. In any context, the representations 
of the quantum group associated with its Q Y B  equation are evidently of central 
importance (Pasquier 1988a, b). 

The nature, structure and representation of quantum groups have been developed 
extensively by Drinfeld (1986), Jimbo (1985, 1986, 1987) and Woronowicz (1987a, b, 
19881, while the important work of Faddeev and collaborators can be traced from the 
deep and useful paper of Faddeev (1987). There are in addition many more papers 
of considerable interest and importance (Babelon 1984, 1988, Rosso 1987,1988, Verdier 
1986-7, Manin 1987). 

In this paper, we study the simplest quantum group SU(2), ,  the q-deformation of 
the Lie algebra of SU(2). This has already been studied extensively by Jimbo, 
Woronowicz and Pasquier as well as Vaksman and Soibelmann (1988), Matsuda et a1 
(1988) and by Kirillov and Reshetikhin (1988). Here we wish to generalise to SU(2),, 
Schwinger’s approach (Schwinger 1951) to the quantum theory of angular momentum. 
To achieve this, a q-deformation of the quantum harmonic oscillator formalism has 
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to be developed. Much of the present paper is devoted to this task. Then the algebra 
of SU(2),, and its representations can be realised in terms of the variables of two 
independent q-deformed harmonic oscillators. Our results involve explicit coordinate 
or wavefunction representations as well as abstract Hilbert space versions. 

The paper is organised as follows. After a brief review in 0 2 of the SU(2), algebra, 
we turn in Q 3 to developing the theory of the q-deformation of the simple harmonic 
oscillator, sufficiently to allow the realisation in B 4 of SU(2), in terms of two q- 
deformed oscillator degrees of freedom. In $4 5 and 6, we return to the oscillator itself. 

2. Review of SU(2), algebra 

The ‘quantum group’ SU(2), of Sklyanin (1982,1983), Jimbo (1985), Drinfield (1986) 
and Woronowicz (1987) is a C-algebra of self-adjoint operators J x ,  J , ,  JL, described 
by the relations 

[ J , ,  J*1= *J* 

[ J + ,  J-I= [ 2 J z 1  

where J ,  = Jx * iJ,, and we have introduced the abbreviation 

q x  - 4 - x  

[ X I  =- - q-’ ’ (3) 

To see that the algebras of Woronowicz (1987) and Sklyanin (1982,1983) do indeed 
imply (1)-(3), we refer to Rosso (1987) in the former case, and proceed as follows in 
the latter. Writing the quadratic algebra of Sklyanin as 

[So, & I =  0 [So ,  S,] = *tanh2(fs)(S,S3+ S 3 S * )  

[ S+ , S-] = 4SoS3 [S,, S*l= *(SOS,+ S*S,) 

one writes S2 = S: + Si + S: and checks that the operators 

KO= Si+S2 K ,  = S 2 +  (tanh2 is)$ 

are Casimir operators. However KO and K ,  are not independent, since, in any rep- 
resentation, it can be shown that 

Si- Si tanh’ is = 4 sinh’ fs. 

Hence, introducing 

SO = 2 sinh(is) cosh sJ, 

S3 = 2 cosh(&) sinh sJ, 

J ,  = S J ( 2  sinh s )  

allows it to be shown that J z ,  J ,  so defined obey ( 1 )  and (2) .  Equation (3) involves 
the parameter q = e‘, s real and positive, so that the right-hand side of (2)  is also given 
by sinh 2sJ,/sinh s and approaches 25: as s + 0. Thus (1) and (2) define a deformation 
using q of the Lie algebra of SU(2), to which the word quantum is applied with s 
playing a role loosely like that of Planck’s constant. 
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Jimbo has shown that there exists one representation of (1) and (2) for each j ,  
with basis I j m ) ,  -j S m S j ,  according to j = 0,  f , 1, , . . , and it acts in a Hilbert space 

J z l j m )  = m l j m )  (4) 

J * l j m ) = ( [ j * m ] [ j i m + 1 ] ) " * 1 j m * l )  

C I j m ) = [ j + f l 2 l j m )  

where C is the Casimir operator of SU(2), 

c = [ J ,  + 4 1 2  + J-J+ = [ Jz  - + J+J- . 
We wish to describe a realisation for SU(2), analogous to that of Schwinger (1951) 

and Bargmann (1962) for the angular momenta algebra. In other words, we wish to 
write J in terms of the creation and destruction operators of a pair of independent 
q-deformed harmonic oscillator degrees of freedom. 

3. The q-deformed harmonic oscillator 

We set out by considering an operator a and its adjoint a+,  acting in a Hilbert space 
with basis In), n = 0,1 ,2 , .  . . ,such that 

a10) = 0 I n )  = (a+)"  I O ) /  ([ n 3 !) I / '  

where 

[ n ] !  = [ n ] [ n  - 13. .  . [ l ] .  

Then we have 

a+ln) = [ n  + 1]'121n + 1) 

ain)=[n]1 '21n-1)  

where 

aa+ = [ N +  13 

a + a = [ N ]  

and the operator N is such that 

N ( n )  = nln).  

Also one has 

[ N,  a'] = a+ 
q r N a + q - r N  = q r a +  

q"aq-rN = q - r a +  

[ N ,  a ]  = -a 

(10 )  

( 1 1 )  
and can show q N  commutes with a+a and aa+. In fact, (8) and (9) yield 

( 1 2 )  
a deformation of some sort of the usual harmonic oscillator commutation realisation. 
We will show that a structure of the type just postulated does indeed exist by construct- 
ing an explicit realisation of it. However, as (12), involving N explicitly, implies, we 

a a + - q - l a + a = q N  
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are not dealing yet with the natural realisation of it. To proceed towards this, we use 
(11) to write (12) as 

9. (13) q 2 a q - N a +  - q - N / 2 a + a q - N / 2  = 

Now, if we define b by 
b = ( q  - q - ' ) ' / 2 a q - N / 2  

so that 
b +  = ( q  - q - l ) l / 2 q - h / 2 a '  

then (13) becomes 

q 2 b b + - b ' b = q 2 - 1 .  

It is easy to treat this directly, and essentially as one does the ordinary harmonic 
oscillator problem, to find states 1 n), n = 0, 1 , 2 ,  . . . such that b/O) = 0 

(17) 

bln)={n}'"ln -1) (18) 

{x} = 1 - q - 2 " .  

b'ln) = { n + 1}''21 n + 1) 

where we use a further abbreviation 

These are of course the same states as before, as (6) and (7) translate directly into 
(17) and (18) with the aid of (14) and (15). One has also 

bb' = { N  + 1) b'b = { N }  

so that (with q =e')  

- 2 s N  = In( 1 - b'b). 

4. q-oscillator description of SU(2), 

Returning to the deformed oscillator construction of SU(2),, we introduce two indepen- 
dent realisations of the type described in § 3 involving operators a, and a: and related 
kets In,), i = 1 , 2 .  We define 

J ,  = a:a2 J-  = a l a l  

and find 

[ J + ,  J - I =  [2Jz1  

where 

Using the definitions (19) and (20), and the results of P 3, it is easy to verify that (1) 
is satisfied, and that we do indeed have a realisation of the algebra SU(2),. Further, 
with 

n , = j + m  n , = j - m  
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we define the related realisations of the Ijm) basis of SU(2), by means of 

Operation on this basis with J , ,  J ,  given by (19) and (20) leads directly, as required, 
to (4) and ( 5 ) .  

5. Coordinate description of the q-deformed oscillator 

We wish also to display a coordinate representation of the q-deformed harmonic 
oscillator. To realise this, we set out from the definitions 

a = a /ax  (21) 

( 2 2 )  

b = eZx - exesa 

b+ = e - 2 . ~  - e . ~ a  --x e .  

It is easy to use 

e u d e ~ x  = euxeuJ  e u v  

to show that (21) and (22) do  indeed satisfy (16). The circumstances under which b', 
as given by (22) is indeed the adjoint of b as given by (21) will be attended to later. 
From (21), we see that Q o ( x )  such that ( b Q o ) ( x )  = O  is 

Q 0 ( x )  = exp(x2/(2s) -4x) 

and then 

@ , ( X I  = (b+)"@o(x)  

is given by 

where {E} = { n } / ( { k } { n  - k}). One infers (24) by inspection of low n, and proves the 
result by induction using the lemma 

Setting 

q,,(x) = ( { n } ! ) - " ' @ , , ( x )  

we obtain the coordinate representation 

b + q , , ( x )  = { n  + l}"2q,,+,(x) b q , , ( x )  = { n } " 2 q , , - l ( x ) .  

We note that neither the nature of the variable x nor the coordinate representation of 
the Hilbert space scalar product has been considered at this point. 
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6. Orthogonality and scalar product for the q-deformed oscillator 

The functions q,, are in fact related to a set of polynomials defined on the unit 
circle-the Rogers-Szego polynomials. For properties of these, we refer to the work 
of Szego (1982), the book of Andrews (1976) and the article of Andrews and Onofri 
(1984) which has some overlap with $0 4 and 6 of this paper. 

Define the Rogers-Szego polynomials by 

Then the related normalised polynomials 

$, ( Z )  = ({  n }  !) - 9- ' ) "G, (- zq) 

where z = eie  satisfy 

( 4 n 7  cctm) = a n ,  

using the scalar product 

where p ( 0 )  is the theta function 

Comparing (26) with (25) and (24), we identify 

x = - f ie  

and find 

q n ( x  = - t ie )  =Q0(x = -fe)$,(z = e''). 

Hence 

( n t m ) =  Jo2" d e / ( 2 . i r ) u ( e ) q f l ( e ) * q m ( e )  

where 

U( e )  = F (  e)  exp e2/(4s) .  

Using (27), we rewrite (21) and (22) as 

b =exp(-iO)-exp(-fiO) exp(2isa/aO) 

b' = exp(i0) -exp(2isa/ae) exp(fi8). (31) 
Superficially, if ia/ae is Hermitian, it seems plausible that b' as given by (31) is indeed 
conjugate to b as given by (30). A more careful proof, using (28) and (29), depends 
on the evident result 

U( e -2is) = U( e) 
and completes our discussion. 
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7. Further discussion 

The above results give rise directly to one wavefunction realisation of SU(2),. It is 
not the only one available to us. Another, for each fixed I = O,;, 1,. . . , involves 

J ,  =e"[/+ ia/ad] (32) 

J -  = e-'"[ 1 - ia/ad] (33) 

J,  = -ia/ad. (34) 

(41 j m )  = e'"+([/+ m ] ! [ ~ -  m]!) -" '  

That (32)-(34) obey (1)-(3) is easily checked directly using (23). Further, use of 

(35) 

shows that the action of J is in accord with (4) and  (5). A suitable representation of 
the scalar product of the Hilbert space in use here can be given (Sklyanin 1982,1983), 
but this will not be gone into here. 

There are a variety of directions in which further study is under way. Perhaps the 
most important one reflects the fact that a deeper view of everything discussed here 
unquestionably exists. The Bargmann (1962) Hilbert space of the quantum harmonic 
oscillator, and  of angular momentum described (as by Schwinger 1951) in terms of 
two independent such degrees of freedom, involve respectively one complex number 
z, two complex numbers z, and z 2 .  The angular integrals in e i s  and  e '@) ,  eisz control 
orthogonality, but the radial variables are vital to the natural development of the 
formalism. We have here the analogues in the q-deformed theory of the eins,  but not 
of the radial variables. Some embedding is required of our work in a deeper view. It 
would show us for example how the theta function in (28) arises naturally, and  how 
to replace the I in (32) and (33) by a differential operator in some new variable, a 
say, or what is the same, to extend (35) to the q-analogue 

( a 6 I j m  )4 

of the spherical harmonics. 
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